Non-toxic Pseudomonas aeruginosa exotoxin A expressing the FMDV VP1 G-H loop for mucosal vaccination of swine against foot and mouth disease virus.
نویسندگان
چکیده
Synthetic peptides derived from the G-H loop of the foot and mouth disease virus (FMDV) capsid protein VP1 are relatively poor at recapitulating the native conformation present in the virus, and thus are often poor immunogens. We hypothesized that a candidate mucosal vaccine against FMDV could be developed using the non-toxic Pseudomonas aeruginosa exotoxin A (ntPE) to deliver the G-H loop in its native conformation. An added benefit of this approach is the potential for ntPE to serve as an effective carrier/adjuvant molecule for delivery of the fusion protein across the epithelial barrier by virtue of its capacity to bind to CD91. A chimeric protein (ntPE-GH) was generated by inserting the coding sequence of the G-H loop into an expression plasmid encoding ntPE, in place of the native Ib loop. Recombinant ntPE-GH and wild-type ntPE were each expressed in Escherichia coli, purified over a nickel resin, then administered intranasally to the pigs, with or without the mucosal adjuvant cholera toxin (CT). Both the ntPE and ntPE-GH induced mucosal and systemic immune responses against ntPE; moreover, ntPE-GH administered without CT induced anti-GH loop serum IgG antibodies. In conclusion, these data demonstrate that ntPE can be used as a mucosal carrier/adjuvant to induce an immune response against the VP1 G-H loop of FMDV.
منابع مشابه
Phylogenic analysis of serotype Asia1 foot-and-mouth disease virus from Sulaimani/Iraq using VP1 protein: heterogeneity with vaccine strain As1/Shamir/89
Foot-and-mouth disease virus (FMDV) serotypes O, A and Asia1 are responsible for a significant number of disease outbreaks in Iraq. The current study can be considered as the first molecular characterization of serotype Asia1 in Iraq. The present investigation reports the detection of serotype FMDV Asia1 from local farms in Sulaimani districts in 2012 and 2014 outbreaks. Phylogenetic analysis o...
متن کاملEffective synthetic peptide vaccine for foot-and-mouth disease in swine.
We have designed a peptide-based vaccine for foot-and-mouth disease (FMD) effective in swine. The peptide immunogen has a G-H loop domain from the VP1 capsid protein of foot-and-mouth disease virus (FMDV) and a novel promiscuous T helper (Th) site for broad immunogenicity in multiple species. The G-H loop VP1 site was optimised for cross-reactivity to FMDV by the inclusion into the peptide of c...
متن کاملBacterial Toxin Fusion Proteins Elicit Mucosal Immunity against a Foot-and-Mouth Disease Virus Antigen When Administered Intranasally to Guinea Pigs
Peptides corresponding to the foot-and-mouth disease virus VP1 G-H loop are capable of inducing neutralizing antibodies in some species but are considered relatively poor immunogens, especially at mucosal surfaces. However, intranasal administration of antigens along with the appropriate delivery vehicle/adjuvant has been shown to induce mucosal immune responses, and bacterial enterotoxins have...
متن کاملTargeted Delivery of VP1 Antigen of Foot-and-mouth Disease Virus to M Cells Enhances the Antigen-specific Systemic and Mucosal Immune Response
Application of vaccine materials through oral mucosal route confers great economical advantage in animal farming industry due to much less vaccination cost compared with that of injection-based vaccination. In particular, oral administration of recombinant protein antigen against foot-and-mouth disease virus (FMDV) is an ideal strategy because it is safe from FMDV transmission during vaccine pr...
متن کاملExpression of an epitope-based recombinant vaccine against Foot and Mouth Disease (FMDV) in tobacco plant (Nicotiana tabacum)
Regarding high potential of green plants for development of recombinant vaccines, this research was conducted to evaluate expression of a novel recombinant vaccines against Foot and Mouth Disease (FMDV) in tobacco plant. For this purpose, a synthetic gene encoding 129-169 amino acids of foot and mouth disease virus capsid protein VP1 was transferred to tobacco plant via Agrobacterium-mediated g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vaccine
دوره 25 17 شماره
صفحات -
تاریخ انتشار 2007